Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.27.530277

ABSTRACT

Immune responses to SARS-CoV-2 primarily target the receptor binding domain of the spike protein, which can readily mutate to escape acquired immunity. Other regions in the spike S2 subunit, such as the fusion peptide and the stem helix, are highly conserved across sarbecoviruses and recognized by broadly reactive antibodies, providing hope that targeting these epitopes by vaccination could offer protection against both current and emergent viruses. Here we employed computational modeling to design epitope scaffolds that display the fusion peptide and the stem helix epitopes. The engineered proteins bound both mature and germline versions of multiple broad and protective human antibodies with high affinity. Binding specificity was confirmed both biochemically and via high resolution crystal structures. Finally, the epitope scaffolds showed potent engagement of antibodies and memory B-cells from subjects previously exposed to SARS-CoV2, illustrating their potential to elicit antibodies against the fusion peptide and the stem helix by vaccination.

2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.17.21255663

ABSTRACT

As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that are likely to protect from reinfection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL